Senin, 09 Desember 2019

INTEGRAL KALKULUS - TUGAS 12



INTEGRAL KALKULUS


Integral merupakan bentuk operasi matematika yang menjadi kebalikan (invers) dari operasi turunan dan limit dari jumlah atau suatu luas daerah tertentu. Berdasarkan pengertian tersebut ada dua hal yang dilakukan dalam integral sehingga dikategorikan menjadi 2 jenis integral. Pertama, integral sebagai invers/ kebalikan dari turunan disebut sebagai Integral Tak Tentu. Kedua, integral sebagai limit dari jumlah atau suatu luas daerah tertentu disebut integral tentu.

Integral Tak Tentu
Integral tak tentu seperti sebelumnya dijelaskan merupakan invers/kebalikan dari turunan. Turunan dari suatu fungsi, jika diintegralkan akan menghasilkan fungsi itu sendiri. Perhatikanlah contoh turunan-turunan dalam fungsi aljabar berikut ini:
Turunan dari fungsi aljabar y = x3 adalah I = 3x2
Turunan dari fungsi aljabar y = x3 + 8 adalah yI = 3x2
Turunan dari fungsi aljabar y = x3 + 17 adalah yI = 3x2
Turunan dari fungsi aljabar y = x3 – 6 adalah yI = 3x2
Seperti yang sudah dipelajari dalam materi turunan, variabel dalam suatu fungsi mengalami penurunan pangkat. Berdasarkan contoh tersebut, diketahui bahwa ada banyak fungsi yang memiliki hasil turunan yang sama yaitu yI = 3x2. Fungsi dari variabel x3 ataupun fungsi dari variabel x3 yang ditambah atau dikurang suatu bilangan (misal contoh: +8, +17, atau -6) memiliki turunan yang sama. Jika turunan tersebut dintegralkan, seharusnya adalah menjadi fungsi-fungsi awal sebelum diturunkan. Namun, dalam kasus tidak diketahui fungsi awal dari suatu turunan, maka hasil integral dari turunan tersebut dapat ditulis:
f(x) = y = x3 + C
Dengan nilai C bisa berapapun. Notasi C ini disebut sebagai konstanta integral. Integral tak tentu dari suatu fungsi dinotasikan sebagai:
Rumus Umum Integral

Pengembangan Rumus Integral :

CONTOH SOAL :
1. Diketahui
Jawab :

2. Diketahui



 JAWAB :


Integral Trigonometri

Integral juga mampu dioperasikan pada fungsi trigonometri. Pengoperasian integral trigonometri dilakukan dengan konsep yang sama pada integral aljabar yaitu kebalikan dari penurunan. hingga bisa disimpulkan bahwa:

Menentukan Persamaan Kurva

gradien dan persamaan garis singgung kurva di suatu titik. Jika y = f(x), gradien garis singgung kurva di sembarang titik pada kurva ialah y’ = = f'(x). Oleh sebab itu, jika gradien garis singgungnya sudah diketahui jadi persamaan kurvanya bisa ditentukan dengan cara berikut.
y = ʃ f ‘ (x) dx = f(x) + c
Andai salah satu titik yang melalui kurva sudah diketahui, nilai c bisa diketahui sehingga persamaan kurvanya bisa ditentukan.

Contoh :
Gradien garis singgung kurva di titik (x, y) ialah 2x – 7. Jika kurva itu melalui titik (4, –2), tentukanlah persamaan kurvanya.
Jawab :
f ‘(x) = = 2x – 7
y = f(x) = ʃ (2x – 7) dx = x2 – 7x + c.
Karena kurva melalui titik (4, –2)
maka : f(4) = –2 ↔ 42 – 7(4) + c = –2
–12 + c = –2
c = 10
Maka, persamaan kurva tersebut yaitu y = x2 – 7x + 10.

Tidak ada komentar:

Posting Komentar